• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards the Visualization of Aggregated Class Activation Maps to Analyse the Global Contribution of Class Features
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Towards the Visualization of Aggregated Class Activation Maps to Analyse the Global Contribution of Class Features

Abstract
Deep learning (DL) models achieve remarkable performance in classification tasks. However, models with high complexity can not be used in many risk-sensitive applications unless a comprehensible explanation is presented. Explainable artificial intelligence (xAI) focuses on the research to explain the decision-making of AI systems like DL. We extend a recent method of Class Activation Maps (CAMs) which visualizes the importance of each feature of a data sample contributing to the classification. In this paper, we aggregate CAMs from multiple samples to show a global explanation of the classification for semantically structured data. The aggregation allows the analyst to make sophisticated assumptions and analyze them with further drill-down visualizations. Our visual representation for the global CAM illustrates the impact of each feature with a square glyph containing two indicators. The color of the square indicates the classification impact of this feature. The size of the filled square describes the variability of the impact between single samples. For interesting features that require further analysis, a detailed view is necessary that provides the distribution of these values. We propose an interactive histogram to filter samples and refine the CAM to show relevant samples only. Our approach allows an analyst to detect important features of high-dimensional data and derive adjustments to the AI model based on our global explanation visualization.
Author(s)
Cherepanov, Igor
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Sessler, David  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Ulmer, Alex  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Lücke-Tieke, Hendrik  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kohlhammer, Jörn  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
Explainable Artificial Intelligence. First World Conference, xAI 2023. Proceedings. Pt.II  
Conference
World Conference on eXplainable Artificial Intelligence 2023  
DOI
10.1007/978-3-031-44067-0_1
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Human computer interaction (HCI)

  • Research Line: Machine learning (ML)

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Machine learning

  • Interactive machine learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024
OSZAR »