• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Understanding Contact Nonuniformities at Interfaces in Perovskite Silicon Tandem Solar Cells Using Luminescence Imaging, Lock-In Thermography, and 2D/3D Simulations
 
  • Details
  • Full
Options
2023
Journal Article
Title

Understanding Contact Nonuniformities at Interfaces in Perovskite Silicon Tandem Solar Cells Using Luminescence Imaging, Lock-In Thermography, and 2D/3D Simulations

Abstract
The top cell of a perovskite silicon tandem solar cell requires several material layers on each side of the perovskite absorber to efficiently extract electrons and holes, respectively. These layers must meet multiple requirements simultaneously, namely, low interface recombination, good charge carrier selectivity, low contact resistivity, and high optical transparency. Due to the complex architecture, characterization techniques are required in material and process optimization to identify loss mechanisms. Spatial resolution of the characterization is gaining importance along with the upscaling of the perovskite technology. Herein, electro- and photoluminescence (EL and PL) imaging is combined with illuminated lock-in thermography (ILIT) for a comprehensive electro-optical characterization of both subcells in perovskite silicon tandem devices with state-of-the-art cell architecture. Thereby, the combination of the presented characterization methods together with numerical simulation models enables to carry out holistic investigations of device limitations. The strength of this approach is showcased by one particularly remarkable feature that is observed in the investigated tandem device, showing a low PL but high EL signal at local spots. Together with multidimensional optoelectrical device simulations, the measurements are explained and the root cause of this feature to originate from the perovskite/C60 interface is suggested.
Author(s)
Fischer, Oliver  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Fell, Andreas  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Meßmer, Christoph Alexander  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Efinger, Raphael  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Schindler, Florian  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Glunz, Stefan  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Schubert, Martin  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Journal
Solar RRL  
Open Access
DOI
10.1002/solr.202300249
10.24406/publica-1972
File(s)
Fischer, Fell et al. 2023 - Understanding Contact Non-Uniformities at Interfaces.pdf (4.28 MB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024
OSZAR »